翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kronecker sum : ウィキペディア英語版
Kronecker product

In mathematics, the Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product (which is denoted by the same symbol) from vectors to matrices, and gives the matrix of the tensor product with respect to a standard choice of basis. The Kronecker product should not be confused with the usual matrix multiplication, which is an entirely different operation.
The Kronecker product is named after Leopold Kronecker, even though there is little evidence that he was the first to define and use it. Indeed, in the past the Kronecker product was sometimes called the ''Zehfuss matrix'', after Johann Georg Zehfuss who in 1858 described the matrix operation we now know as the Kronecker product.
== Definition ==
If A is an matrix and B is a matrix, then the Kronecker product is the block matrix:
:\mathbf\otimes\mathbf = \begin a_ \mathbf & \cdots & a_\mathbf \\ \vdots & \ddots & \vdots \\ a_ \mathbf & \cdots & a_ \mathbf \end,
more explicitly:
:} = \begin
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_ \\
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_ \\
\vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_ \\
\vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_ \\
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_ \\
\vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
a_ b_ & a_ b_ & \cdots & a_ b_ &
\cdots & \cdots & a_ b_ & a_ b_ & \cdots & a_ b_
\end.
More compactly, we have

(A\otimes B)_ = a_ b_

If A and B represent linear transformations and , respectively, then represents the tensor product of the two maps, .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kronecker product」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.